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CHAPTER IV  DEFECTS IN CRYSTALS 
 
 
 

 
 

4.1 Introduction 
 

When Peierls wrote his seminal paper on the thermal transport properties of solids, he did include 

a short section on the role of "lattice perturbations." He proposed that defects hindered the flow of 

"lattice waves." However, his discussion remained qualitative. Peierls was curious about the impact 

of defects on heat transfer and conductivity. He even drafted a manuscript on this topic, but his 

efforts were firmly rebuffed by none other than the famous Pauli, a member of his Ph.D. committee. 

Pauli opposed the publication of Peierls's manuscript and wrote, "The residual resistivity is caused 

by dirt, and one should not dwell in the dirt." In his review commentary, Pauli added, "You should 

find more sensible questions to be answered; I find that you recently have concerned yourself too 

much with small issues." The content of the draft manuscript that Peierls shared with Pauli is 

unknown. Sadly, it was surprising to see one of the fathers of modern science argue that some 

subjects should not be studied, almost as a matter of principle, and that the study of defects was 

considered undignified at the time. However, two essential facts are clear: defects are naturally 

intrinsic to materials, and one can control and enhance materials' properties with defects and 

impurities.  

 

We can       classify different kinds of defects by their spatial dimension: 

 

i)  Zero dimensional defects or point defects This category includes 

vacancies, interstitial defects, and substitutional defects, as 

shown in Figure 4.1. 
 

 

 

 

 

 

                                                 

Figure 4-1: Point defects 

 

 
ii) One-dimensional defects such as disclinations and 

dislocations (Figure 4-2). Disclinations derive from 

inserting or subtracting a block of atoms in the crystal 

lattice. Dislocations derive from the insertion or subtraction 

of an atomic plane. 

 
Figure 4-2: Insertion of an extra half-plane creating an edge dislocation 
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Figure 4-3: DISLOCATIONS in periodic structures have to obey the translational symmetries of the lattice. Here, we 

create an edge dislocation (left) and a screw dislocation (right) in a cubic crystal by cutting through a crystal plane and 

moving one of the surfaces from one row to the other. The continuity of the lattice is conserved. After that, the two surfaces 

are joined together again. The dislocation core can be empty or full (the resulting structure is then disordered). 

 
Figure 4-4: DISCLINATIONS in structured materials are possible because the rotations required to generate those 

defects are symmetry operations of the lattice. In a cubic lattice (order of symmetry 4), the minimal rotation is 90º. We 

can obtain edge disclinations by removing an edge of material (a) or adding one (b). We can have twist disclinations by 

a 90º rotation of the two cut surfaces around an axis perpendicular to them (c) or around an axis belonging to the initial 

cutting plane and intercepting the axis of the torus (d). Rotations by different values than 90º or multiples of it generate 

discontinuities in the lattice; the cut parts cannot be joined together without creating structural interruptions. As these 

heavy rotations create enormous stresses, ordinary crystals have no disclinations. The core of the disclination, encircling 

the disclination line, can be empty or full. 
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iii) Two-dimensional defects or grain boundaries. These defects arise in the interface between 

two single crystals. Here, we consider grain boundary interfaces of two crystals having random 

orientations, with coincidence sites and those with a weak misorientation (small angle). 

Figure 4-5: A grain boundary, by general definition, is a disordered zone in a crystal. In coincidence 

site lattice (CLS) theory, a grain boundary is characterized by the periodic superposition of two 

lattices. In Σ=5 boundaries, there is a virtual coincidence for every five atoms of the lattices across 

the boundary (a). An equidistant stack of dislocations can model a small angle boundary (b). 

 

Symmetric crystalline boundaries are twins and stacking faults. A twin crystal has a unique 

orientation relation with its parent crystal formed by many processes, e.g.,  during crystal growth, if 

the crystal is subjected to stress or temperature/pressure conditions different from those during 

growth, two or more intergrown crystals are formed symmetrically, having a mirror plane. For 

example, compound twins in FCC crystals (Figure 4-6) are common growth faults. They are 

sometimes referred to as 3 CSL boundaries since three atoms are mirrored across the mirror plane 

twin boundary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-6: A twin is characterized by a mirror symmetry between two crystals. 
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iv) Three-dimensional defects include amorphous phases, glassy materials, quasicrystals, and 

fractals. 

 
Figure 4-7:  Crystal silica (a) is characterized by an arrangement on a crystal lattice similar to a diamond based on 

tetrahedrons of            . If liquid silicate is cooled down fast enough, the ions cannot rearrange, and a glass forms. 

 

It is well known from crystallography that covering a two-dimensional surface with fivefold 

symmetry patterns is impossible. However, some materials show shapes and diffraction diagrams 

with a fivefold symmetry axis, others with symmetry 7, and higher order symmetries have been found. 

 
Figure 4-8: Image of a quasicrystal Al-Mn-Si, which shows a symmetry 5 

 

This unphysical symmetry derives from a periodic arrangement at a local scale, which cannot be 

reproduced in the long range. An example of such a structure in two dimensions is given by the 

Penrose tiling shown in Figure 4-9. 
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Figure 4-9: Penrose tiling in two dimensions formed by two kinds of diamond shapes. This arrangement is not periodic 

but shows a five-fold rotational symmetry around a local axis. 

 

Fractal structures are persistent in nature, e.g., trees, snowflakes, and dendrites of solidified metal 

microstructures are all characterized by structures reproduced at different scale levels. 

 
Figure 4-10: Two-dimensional fractal structure. In a crystal structure, if we take three times the radius, the quantity of 

matter in the circle formed is times larger than in the initial circle. In this fractal, doing the same, the increase in 

the material is by a factor of 5. The fractal dimension is then 1.46.
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A particularity of fractals is that mass does not increase as but instead follows the law: 

 

with d < 3 

 

Thus, the density of a fractal material decreases as the size of the repetitive fractal unit increases. 

 

4.2   Point defects - introduction 
 

This section examines different types of point defects and the methods to create them. We can 

distinguish between intrinsic point defects (self-interstitials in a pure metal) and extrinsic point 

defects (impurity interstitials). In a model made of solid spheres, we can imagine these defects as it 

is illustrated below: 

 Figure 4-11: Self-interstitial point defects: vacancy, double vacancy, self-interstitial, Frenkel pair 

Figure 4-12: Interstitials in FCC have three possible configurations: a) centered, b) split interstitials (sometimes called 

dumbbell interstitials), and c) crowdion interstitial (one additional atom along the close-packed direction, e.g., <110>. 

Its existence is controversial and never proven as it is hard to distinguish between intrinsic interstitials.
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Figure 4-13: A double vacancy defect in an FCC structure has six possible orientations 

 

Figure 4-14: A triple vacancy represented in three possible configurations are, from left to right, linear, planar, 

tetrahedral (the most stable) 

Figure 4-15: Extrinsic point defects. Interstitial and substitutional impurities 

 

 

 

    Figure 4-16 : Interstitial impurities in cubic centered 

metals, for example C , N, O in Fe, Ta, Nb, Cr are usually 

located in octahedral sites. 
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Point defects in ionic crystals 

 

Ionic crystals must have charge neutrality to be at equilibrium. 

Figure 4-17: Defects in ionic crystals. There must be two atoms of Al for each missing Mg to ensure neutrality in MgO. 

This is an example of defects generated by substitutional atoms. 

 

Vacancy defects in ionic crystals can be of two kinds (figure 4-18): 

 

1) Schottky defects  vacant cation+ and vacant anion- 

 

2) Frenkel defects  vacant cation+ and interstitial anion- 

   or vacant anion- and interstitial cation+ 

Figure 4-18: Defects in ionic crystals: Frenkel and Schottky pairs. 

 

 

4.2.1  Formation energy for point defects 

 

a) Vacancies 

 

An estimated value for the formation energy of a vacancy can be calculated by considering that p 

bonds have to be cut inside the crystal to extract an atom, and p/2 bonds have to be rebuilt when that 

atom is deposited on the external surface. The formation energy corresponds thus to the rupture of 

p/2 atomic bonds. That is, an atom's sublimation energy corresponds to the rupture of p/2 atoms. We 

can write that we have approximately:
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where is the sublimation energy, and B is the energy of an atomic bond. 

 

In covalent and ionic crystals, this relationship proves to be close to reality (it is the case of central 

forces). Nevertheless, central forces should be considered in the case of metals. From experimental 

results, we use: 

 

This decrease comes from rearranging the lattice around the vacancy, stabilizing it, and reducing its 

energy. 

 

 

b) Interstitials 

 

The formation of an interstitial in a lattice entails a heavy expansion in the local volume δV. An 

interstitial can be compared to a sphere of volume δV ~ b3, which has to fit inside a hole of radius 

R<<b (R~0 in the face-centered cubic). The elastic energy due to distortion (Udist) is very high, 

around 2 to 3 μb3. We have: 

The formation energy for an interstitial atom is a function of the structure and the volume of the 

interatomic spaces in the considered crystal. However, as a general rule, interstitial atoms need more 

energy than vacancies for their formation and are thus more challenging to create. 

 

c) Substitutional defects 

 

Substitutional defects can be formed when another atom of similar size replaces an atom of the lattice. 

Here, we calculate the elastic distortion from the presence of an atomic-sized inclusion in the 

framework of continuum mechanics. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-19: Point defects generally show a spherical 

symmetry. The natural choice for the calculations is 

then a spherical system of coordinates.

(4.1) 
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(4.2) 

Strain tensor: 

 

 

 
 

Hooke's law in an isotropic solid: 

with K = λ + 2/(3μ)  (λ and μ being Lamé parameters) 

 

Model 

Consider the point defect as a sphere representing atom B inserted in a cavity corresponding to an 

atom of type A in the matrix. The difference in size between the inclusion of radius 'ρ and the cavity 

of radius ρ creates a distortion, which takes back both radiuses to an equilibrium radius ρE. As a result, 

internal stresses are produced within the matrix and the inclusion. 

 
Figure 4-20: Point defect B causes a distortion of the matrix from ρΑ to ρE. 

 

 

We want to calculate: 

 

1) the equilibrium radius  

2) the stresses and the strains in A and B 

3) several physical and measurable quantities: ΔV/V, elastic energy, etc.
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Procedure to follow: 

 

1. The strain field has to satisfy the equilibrium equation (3.78): 

  

 

But the point defect exhibits a central symmetry           ,   which implies: 

 

   so that  

 

or else . 

 

Let  

 

In spherical coordinates: 

 

Since spherical symmetry has this condition                   we obtain the following: 

2. We know then the displacement field; we can calculate the strain tensor 

 

   
and         

 

 

 
 

The stress tensor is derived by applying Hooke's law: 

 

3. The solution to this problem considers the elastic constants of the two materials, the boundary 

conditions, and the difference in size between the matrix and the inclusion. 

 

  

  

 Elastic constants: 

 Matrix: μ, ν, Κ 

 Inclusion: μ’,ν’,K’ 
 

 Initial radiuses: 

 Matrix: ρ, R 

 Inclusion: ρ'

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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Matrix:  

  

  
 

Inclusion:  

 

To avoid the function diverging, it must be b' = 0 

 

 

 

Boundary conditions: 

1)  

 
 

2) for r = R 

 
 

3)  

 

4)  

 

Conditions 3) and 4) imply  

 

 

We take:      (size factor) 

 

 

To obtain: 

 

 

 

 

 

 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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Measurable physical quantities. 

 

a) Volume variation 

 

 

 

 

 

 

Replacing a and b:  

 

 

  

      corresponds to the concentration of point defects 

 

b) Elastic energy 

 

 

 

 

 

 

with                       we find: 

 

 

 

 

Order of magnitude of the elastic energy 

 

   and     

 

 

 

4.2.2  Concentration of vacancies at thermodynamic equilibrium 

 

The equilibrium concentration of vacancies at constant P and T is found by minimizing Gibbs free 

energy: G = H - TS. 

 

For example, if we introduce n vacancies on (N+n) sites of the lattice, the variation in free energy is: 

 

 

where:      

 

is the free energy of formation for one vacancy 

 

and      is the entropy of mixing 

 

The thermodynamic equilibrium implies:  

 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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It follows then (cf. exercise) that the concentration of vacancies at equilibrium is: 

 

 

 

 

or else  

 

 

  is the formation energy for a vacancy ~ 1 eV /atom= 1. 10-5 Joules 

  is the formation enthalpy of a vacancy  

  is the formation volume of the vacancy ~ atomic volume ~ 10-29 m3   

  is the atmospheric pressure Pa 

  Joules  

 at normal pressure, this term is negligible compared to the formation energy. It  

 intervenes only at high-pressure levels. 

 is the formation entropy of the vacancy. This value is due to the change in the  

 vibration entropy of the crystal when we introduce a vacancy defect. 

 

In the following, we calculate the formation entropy of a vacancy defect and then      . 

 

Here, we give the procedure to be followed, but this chapter is not subject to the final examination. 

We consider N atoms vibrating at the same frequency ν. A vacancy changes the vibration frequency 

(photons) of x nearby atoms, which see their frequency go from ν to  'ν= ν+Δν.  

 

i)Einstein approximation 

 

We must first show that the vibration entropy       is given by: 

 

 

 

 

 

Each atom is modeled as three oscillators. Each of them receives quanta of energy hν. Thus, there are 

ni oscillators of energy εi = (i+1/2) hν for N atoms. We then have 3N oscillators attributed to the 

energy levels εi. 

 

The number of possible configurations is written as: 

(4.28) 

(4.29) 

(4.30) 
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with  

 

The free energy of the system is  

 

 

 

 

 

 

 

 

 

 

 

 

 

The probability that the minimum of F gives ni oscillators of energy εi under the condition that  

 

 

 

We use, in this case, the Lagrange function: 

 

 

 

 

 
 

 

 

 

from which     and    

 

Therefore : 

 

 

 

 

 

                      is the partition function 

 

 

Combining (4.32) and (4.33)  

 

 

 

 

 

 

 

(4.31) 

(4.32) 

(4.33) 

(4.34) 
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Now:  

 

 
 

If T>>0, then         is small, and then  

 

 

 

and           

  

from where 

 

 

 

 

ii) Evaluation of the Grüneisen constant 

 

We want to show that                       is a constant. 

 

Starting from the free energy of the crystal formed by N atoms: 

 

 

 

 

 

 

 

ε is the energy of each atom. 

 

At constant pressure and temperature values, thermodynamic equilibrium holds for dG = 0. However, 

as dV is not necessarily zero: 

 

 

 

 

 

 

 

 

It is now necessary to calculate  

 

(4.35) 

(4.36) 

(4.37) 
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  Assuming small variations in V around  

  V0 : 

   
 

  We note that in . 

 

 

The total energy variation ΔE as a function of ΔV = V - V0 can be written as: 

 

 
which corresponds to the work done by the external pressure P. 

 

Thus, if we define:                    

 

we have:   

 

 

From this:  

 

 

 Therefore:  

 

 

and  

 

and  

 

 

Combining (4.39) and (4.37) 
 

 

 

 

Differentiating (4.40) to T: 
 

 

 

 

 

                  for high temperatures (Dulong-Petit law), so that: 

 

 

 

 

and  

 

 

where γ is called the Grüneisen parameter. 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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In metals, this constant takes values between 2 and 3. 

 

Some typical examples are:  γAl = 2.06 

     γNi = 1.7 

     γAg = 2.6 

     γAu = 2.93 

 

iii) Vacancy formation energy 

 

We suppose that a vacancy is surrounded by x atoms, which changes their frequency from ν to  'ν
(when the vacancy is formed), whereas the other atoms are not perturbed. The variation in the 

vibrational entropy of the lattice gives the formation entropy of the vacancy. 

 

 

 

 

 

 

 

 

 

Since Δν is small, then  

 

We show before (4.41) that: 

 

 

 

 

 
 

 

                       from which  

 

 

 

                   and            yield: 

 

 

 

From this: 

 

 

 

 

Thus, the equilibrium concentration of vacancies can be estimated for ambient temperature at 

. 

 

(4.43) 
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4.2.3  Creation of Vacancies 

 

There are three possible ways to create vacancy defects: 

 

a) Quenching 

b) Strain hardening 

c) Irradiation 

 

a)   Quenching 

 

Quenching can produce an oversaturation of vacancies. 

Consider the formula (4.28):  

 

During rapid cooling, vacancies are "frozen" in the crystal. However, at temperature , the 

concentration remains , corresponding to a metastable state. 

The cooling speed needed to produce vacancies, dT/dtmax, is in the order of magnitude of . 

 

The quenching speeds are a function of the following: 

 

1 - the thermal conductivity 

2 - the heat capacity 

3 - the shape of the sample 

4 - the soaking fluid (water, nitrogen, liquid helium) 

 

Measurement of the density of vacancy defects 

 

We proceed with a series of isochronous annealings followed by quenching at the temperature of 

liquid helium (figure 4-21). 

Figure 4-21: Diagram of the isochronous anneals with consecutive quenching 
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We have:   with  

     

     
 

Then:                                                                                            since   

 

 

 

Plotting:                                     we get the formation energy of vacancies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: 

 

 

b)  Strain hardening 

 

The interactions between dislocations (see Chapter VI) lead to the formation of vacancies and 

interstitials. 

 

c)  Irradiation 

Irradiation of incident particles (electrons, neutrons, ions, photons) on matter produces the 

displacement of atoms. This is possible when the energy transmitted during the collisions is much 

larger than the energy of the bonds between atoms. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Collision cascade producing lattice defects  
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Figure 4-23: Collision particle-atom, before and after (from left to right) 

 

In the case of a frontal elastic collision, we can calculate the maximum kinetic         energy transmitted 

to the atom of mass M: 

 

 

(mc2 = 511 KeV for the electron). 

 

We can also write for electrons:  

 

where is expressed in eV, E in MeV, and M is the atomic mass of the irradiated element. 

 

Example 

A = 100, E = 1 MeV  

 

                   (bond energy), e.g., 3-4 eV in copper. 

 

We call threshold energy the limit beyond which there are irreversible atom displacements. If  

                 the energy is transformed into heat. In many cases, 

 

The factor of 4 comes from the fact that the atom is not on the surface, and part of the bonds of the 

closest neighbors need to be broken as well. 

 

The cross-section for the atomic displacement is given by (in barns): 
 

 

 

 

 

with c = concentration of the vacancies created 

 = irradiation flux 

= amount of irradiation 

It is possible to have a cascade phenomenon: an atom ejected from its site collides with other atoms 

and throws them out of their respective sites. The average number of atoms displaced (per unit 

volume) is: 

 

 

where      is the number of atoms per unit volume, and is the average number of displacements per 

primary atom. 

 

                     with average energy transmitted by the incident particle. 

 

(4.46) 

(4.47) 

(4.48) 
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Example:  irradiation with neutrons at 1 MeV 

 

In iron    

In copper   

 

Other effects of irradiation 

 

i) Low-temperature transformations 

 

 - formation of new phases (generally non-stable) 

 - accelerated diffusion 

 

ii) Mechanical properties alteration 

 

 - pinning of the dislocations by point defects 

 - weakening of materials 

 

iii) Production of He gas bubbles 

 

Nuclear reactions give the products of fission, one part of which is gaseous. For example: 

 

 

 

 

These gases can form bubbles interacting with dislocations or other defects, causing swelling. 

During irradiation, we observe an increase in the volume due to the displacement of atoms 

and, consequently, to the production of vacancies and gas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-24: Electrical Resistivity measurements in Copper schematically showing the five stages of recovery (defect 

annealing) from point defects produced irradiation 1 


