Defects in crystals

CHAPTER IV DEFECTS IN CRYSTALS

4.1 Introduction

When Peierls wrote his seminal paper on the thermal transport properties of solids, he did include
a short section on the role of "lattice perturbations.” He proposed that defects hindered the flow of
"lattice waves." However, his discussion remained qualitative. Peierls was curious about the impact
of defects on heat transfer and conductivity. He even drafted a manuscript on this topic, but his
efforts were firmly rebuffed by none other than the famous Pauli, a member of his Ph.D. committee.
Pauli opposed the publication of Peierls's manuscript and wrote, "The residual resistivity is caused
by dirt, and one should not dwell in the dirt." In his review commentary, Pauli added, "You should
find more sensible questions to be answered; | find that you recently have concerned yourself too
much with small issues." The content of the draft manuscript that Peierls shared with Pauli is
unknown. Sadly, it was surprising to see one of the fathers of modern science argue that some
subjects should not be studied, almost as a matter of principle, and that the study of defects was
considered undignified at the time. However, two essential facts are clear: defects are naturally
intrinsic to materials, and one can control and enhance materials' properties with defects and
impurities.

We canclassify different kinds of defects by their spatial dimension:

i) Zero dimensional defects or point defects This category includes
vacancies, interstitial defects, and substitutional defects, as
shown in Figure 4.1.
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Figure 4-1: Point defects

i)  One-dimensional defects such as disclinations and
dislocations (Figure 4-2). Disclinations derive from
inserting or subtracting a block of atoms in the crystal
lattice. Dislocations derive from the insertion or subtraction
a of an atomic plane.

Figure 4-2: Insertion of an extra half-plane creating an edge dislocation
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Edge dislocation Screw dislocation

Figure 4-3: DISLOCATIONS in periodic structures have to obey the translational symmetries of the lattice. Here, we
create an edge dislocation (left) and a screw dislocation (right) in a cubic crystal by cutting through a crystal plane and
moving one of the surfaces from one row to the other. The continuity of the lattice is conserved. After that, the two surfaces

are joined together again. The dislocation core can be empty or full (the resulting structure is then disordered).

Twist disclination +90° Twist disclination -90°

Figure 4-4: DISCLINATIONS in structured materials are possible because the rotations required to generate those
defects are symmetry operations of the lattice. In a cubic lattice (order of symmetry 4), the minimal rotation is 90°. We
can obtain edge disclinations by removing an edge of material (a) or adding one (b). We can have twist disclinations by
a 90° rotation of the two cut surfaces around an axis perpendicular to them (c) or around an axis belonging to the initial
cutting plane and intercepting the axis of the torus (d). Rotations by different values than 90° or multiples of it generate
discontinuities in the lattice; the cut parts cannot be joined together without creating structural interruptions. As these
heavy rotations create enormous stresses, ordinary crystals have no disclinations. The core of the disclination, encircling
the disclination line, can be empty or full.
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iii) Two-dimensional defects or grain boundaries. These defects arise in the interface between
two single crystals. Here, we consider grain boundary interfaces of two crystals having random
orientations, with coincidence sites and those with a weak misorientation (small angle).
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Figure 4-5: A grain boundary, by general definition, is a disordered zone in a crystal. In coincidence
site lattice (CLS) theory, a grain boundary is characterized by the periodic superposition of two
lattices. In 2=5 boundaries, there is a virtual coincidence for every five atoms of the lattices across
the boundary (a). An equidistant stack of dislocations can model a small angle boundary (b).

Symmetric crystalline boundaries are twins and stacking faults. A twin crystal has a unique
orientation relation with its parent crystal formed by many processes, e.g., during crystal growth, if
the crystal is subjected to stress or temperature/pressure conditions different from those during
growth, two or more intergrown crystals are formed symmetrically, having a mirror plane. For
example, compound twins in FCC crystals (Figure 4-6) are common growth faults. They are
sometimes referred to as £3 CSL boundaries since three atoms are mirrored across the mirror plane
twin boundary.

Figure 4-6: A twin is characterized by a mirror symmetry between two crystals.
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iv) Three-dimensional defects include amorphous phases, glassy materials, quasicrystals, and
fractals.
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Structure: Cristobalite (Si0,) -type
Bravais lattice: fec
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Figure 4-7: Crystal silica (a) is characterized by an arrangement on a crystal lattice similar to a diamond based on
tetrahedrons of Si0,* . If liquid silicate is cooled down fast enough, the ions cannot rearrange, and a glass forms.

It is well known from crystallography that covering a two-dimensional surface with fivefold
symmetry patterns is impossible. However, some materials show shapes and diffraction diagrams
with a fivefold symmetry axis, others with symmetry 7, and higher order symmetries have been found.

Py

Figure 4-8: Image of a quasicrystal Al-Mn-Si, which shows a symmetry 5
This unphysical symmetry derives from a periodic arrangement at a local scale, which cannot be

reproduced in the long range. An example of such a structure in two dimensions is given by the
Penrose tiling shown in Figure 4-9.
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Figure 4-9: Penrose tiling in two dimensions formed by two kinds of diamond shapes. This arrangement is not periodic
but shows a five-fold rotational symmetry around a local axis.

Fractal structures are persistent in nature, e.g., trees, snowflakes, and dendrites of solidified metal
microstructures are all characterized by structures reproduced at different scale levels.

Figure 4-10: Two-dimensional fractal structure. In a crystal structure, if we take three times the radius, the quantity of
matter in the circle formed is r* =9 times larger than in the initial circle. In this fractal, doing the same, the increase in
the material is by a factor of 5. The fractal dimension is then 1.46.
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A particularity of fractals is that mass does not increase as r* but instead follows the law:
M(r)=Ar withd <3

Thus, the density of a fractal material decreases as the size of the repetitive fractal unit increases.

_ M(r) _ vd-3
p(r)= _V(r) =Cr

4.2 Point defects - introduction

This section examines different types of point defects and the methods to create them. We can
distinguish between intrinsic point defects (self-interstitials in a pure metal) and extrinsic point
defects (impurity interstitials). In a model made of solid spheres, we can imagine these defects as it
is illustrated below:
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Figure 4-12: Interstitials in FCC have three possible configurations: a) centered, b) split interstitials (sometimes called
dumbbell interstitials), and c) crowdion interstitial (one additional atom along the close-packed direction, e.g., <110>.
Its existence is controversial and never proven as it is hard to distinguish between intrinsic interstitials.
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Figure 4-13: A double vacancy defect in an FCC structure has six possible orientations
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Figure 4-14: A triple vacancy represented in three possible configurations are, from left to right, linear, planar,
tetrahedral (the most stable)
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Figure 4-15: Extrinsic point defects. Interstitial and substitutional impurities

Figure 4-16 : Interstitial impurities in cubic centered
metals, for example C, N, O in Fe, Ta, Nb, Cr are usually
located in octahedral sites.
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Point defects in ionic crystals

lonic crystals must have charge neutrality to be at equilibrium.

o Vacancy

Figure 4-17: Defects in ionic crystals. There must be two atoms of Al for each missing Mg to ensure neutrality in MgO.
This is an example of defects generated by substitutional atoms.

Vacancy defects in ionic crystals can be of two kinds (figure 4-18):
1) Schottky defects vacant cation+ and vacant anion-

2) Frenkel defects vacant cation+ and interstitial anion-
or vacant anion- and interstitial cation+
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Frenkel defect

Figure 4-18: Defects in ionic crystals: Frenkel and Schottky pairs.

4.2.1 Formation energy for point defects
a) Vacancies

An estimated value for the formation energy of a vacancy can be calculated by considering that p
bonds have to be cut inside the crystal to extract an atom, and p/2 bonds have to be rebuilt when that
atom is deposited on the external surface. The formation energy corresponds thus to the rupture of
p/2 atomic bonds. That is, an atom'’s sublimation energy corresponds to the rupture of p/2 atoms. We
can write that we have approximately:
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Eusis the sublimation energy, and B is the energy of an atomic bond.

where
In covalent and ionic crystals, this relationship proves to be close to reality (it is the case of central
forces). Nevertheless, central forces should be considered in the case of metals. From experimental
results, we use:

U,=025E,, to 0S5E, (4.1)

This decrease comes from rearranging the lattice around the vacancy, stabilizing it, and reducing its
energy.

b) Interstitials

The formation of an interstitial in a lattice entails a heavy expansion in the local volume 6V. An
interstitial can be compared to a sphere of volume 67 ~ b, which has to fit inside a hole of radius
R<<b (R~0 in the face-centered cubic). The elastic energy due to distortion (Udist) is very high,
around 2 to 3 pb®. We have:

Uﬂ ~ Udm
The formation energy for an interstitial atom is a function of the structure and the volume of the

interatomic spaces in the considered crystal. However, as a general rule, interstitial atoms need more
energy than vacancies for their formation and are thus more challenging to create.

c) Substitutional defects
Substitutional defects can be formed when another atom of similar size replaces an atom of the lattice.

Here, we calculate the elastic distortion from the presence of an atomic-sized inclusion in the
framework of continuum mechanics.

Figure 4-19: Point defects generally show a spherical
symmetry. The natural choice for the calculations is
then a spherical system of coordinates.
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Strain tensor:

e 2O o _lowp w1 Oy u,
" or © 100 r ®" rsin® 09 rtan® r
du, 1du u
26 =—8 - —""r_ 0
" 9 rop r
2, au¢+ 1 %_ﬁ (4.2)

" or  rsin@ a9 r
L duy 104, u,

2€,, =
% rsin@ 0p r 00 rtand

Hooke's law in an isotropic solid:

1
0, =Ku, 6, +2u(u, — g‘iyuu)

with K =1+ 2/3u) (A and p being Lamé parameters)

Model

Consider the point defect as a sphere representing atom B inserted in a cavity corresponding to an
atom of type A in the matrix. The difference in size between the inclusion of radius 'p and the cavity
of radius p creates a distortion, which takes back both radiuses to an equilibrium radius pe. As a result,
internal stresses are produced within the matrix and the inclusion.

Figure 4-20: Point defect B causes a distortion of the matrix from p4to pe.

We want to calculate:

1) the equilibrium radius
2) the stresses and the strains in A and B
3) several physical and measurable quantities: AV/V, elastic energy, etc.
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Procedure to follow:

1. The strain field # =i (r) has to satisfy the equilibrium equation (3.78):
2(1-v)grad(divii)— (1-2v)rot(rofii) =0

But the point defect exhibits a central symmetry # =i () which implies:
rotii =0 sothat  grad(divii)=0
or else divii = const
Let divii =3a @3

In spherical coordinates:

[a,(rﬁ sinﬂur)+aa(rsm9u3)+a¢(ru¢):| (4.4)

divii = ——
r-sin@

Since spherical symmetry has this condition #, = u, =0 we obtain the following:
u, =ar+ 2 (4'5)

2
r

2. We know then the displacement field; we can calculate the strain tensor

u —aM’—a—2 U, =u —u—’—a+—
rr_ar_ rs 00 — tw_r_ ?'3 and urﬂ:ur¢=u9¢:0
2 4 ub
0, =K(@u, +ug+u,)- Eﬂ(urr + Uy, +u,,)=3Ka— 3 (4.6)
2
O4 =0, =3Ka+ ";b (4.7)

,
The stress tensor is derived by applying Hooke's law:

3. The solution to this problem considers the elastic constants of the two materials, the boundary
conditions, and the difference in size between the matrix and the inclusion.

Elastic constants:
Matrix: p, v, K
Inclusion: w,v',K’

‘j?‘ Initial radiuses:

R Matrix: p, R
Inclusion: p'
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b

) u, =ar+—
Matrix: r
4

Gﬂ‘ = 3Ka_ ’J3b
r
24b
6., =0, =3Ka+
[i¢] [l r3
- | I '
Inclusion: #, =ar

To avoid the function diverging, it must be b'=0

0, =0,'=0y4 =3K'a'

Boundary conditions:
1) O.rr '(pE)zo-rr(pE)

»3K'a'=3Ka— T

3

PE

2) 0,=0forr=R
—)3Ka—4ﬂb—0

R

3) pr—p'=u'(pg)
4) Pe—P=u(pg)

b
Conditions 3) and 4) imply p'—p=apg +F—a'p£

E

We take: n= (size factor)

o 4um
3K'+4p

4ub
a=
3KR’

To obtain:

Pe
An
3K'

b=n
1+

— "+ 4”
Pe=P 3K'+ 4L

(p-p)
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Measurable physical quantities.

a) Volume variation

2
% _ 47:4R ur(R) - 31{;‘5;2) — 3(&4‘%) (423)
~ 7R’
3
4u 4u
31+ 1+
Replacing a and b: AV 311(&] 3K 3nc 3K (4.24)
4 R 4n 4n
1+ 1+
3K' 3K'

3
c= (%) corresponds to the concentration of point defects
b) Elastic energy
W=W

inclusion

+W

matrice

1 1 1
W =20 (p)p’ = pp)Amps + 20, (p:)(pp = PIAmp; = 507, (pr )~ p)ampy  (4:25)

with o), =3Ka” we find:

_ 3.2
W= mpen —4, (4.26)
I+
3K'
Order of magnitude of the elastic energy
4u 3
3= up’ ~1eV and 1+ —~=
Ha =Hp ~1¢ 3K 2
W ~161°[eV]
4.2.2 Concentration of vacancies at thermodynamic equilibrium

The equilibrium concentration of vacancies at constant P and T is found by minimizing Gibbs free
energy: G=H-TS.

For example, if we introduce n vacancies on (N+n) sites of the lattice, the variation in free energy is:

AG = nAG! -TS, (4.27)
where: AGE = Ef + PV — TS

is the free energy of formation for one vacancy

|
and S, = kln(NTr:)' is the entropy of mixing
il
The thermodynamic equilibrium implies: agG =0
n
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It follows then (cf. exercise) that the concentration of vacancies at equilibrium is:

AGY

C,=—2 =¢ & (4.28)
n+N
or else Sy E+PV,” _E[+PVS _Hy (4.29)
C,=ete ¥ =Ce T =Cpel

F
Ey is the formation energy for a vacancy ~ 1 eV /atom= 1. 10~ Joules
F
Hy" s the formation enthalpy of a vacancy
F
Vv is the formation volume of the vacancy ~ atomic volume ~ 102° m®

5
P is the atmospheric pressure ~ 10°py
PV)  ~107 joules = 60107V /atom

at normal pressure, this term is negligible compared to the formation energy. It
intervenes only at high-pressure levels.

F
Sv is the formation entropy of the vacancy. This value is due to the change in the
vibration entropy of the crystal Sywhen we introduce a vacancy defect.

In the following, we calculate the formation entropy of a vacancy defect and then C, .

Here, we give the procedure to be followed, but this chapter is not subject to the final examination.
We consider N atoms vibrating at the same frequency v. A vacancy changes the vibration frequency
(photons) of x nearby atoms, which see their frequency go from v to 'v=v+Av.

i)Einstein approximation

We must first show that the vibration entropy S, is given by:

S, = 3Nk(l+ ]ni)
hv

Each atom is modeled as three oscillators. Each of them receives quanta of energy hv. Thus, there are
ni oscillators of energy &i = (i+1/2) hv for N atoms. We then have 3N oscillators attributed to the

energy levels &i.

The number of possible configurations is written as:

Q= ;N T! (4.30)
n,!
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with Y. n =3N

The free energy of the system is F =E—TS

F=Yne—-kThQ=

=Y ne - kTPN]nBN— 3N—(Zn,. Inn, —n, )J =

=Y ne - kT{3Nh13N—Zn,. 1nn,,J= (4.31)
- ;ni&‘j +kTZ‘njh1;—};{

The probability that the minimum of F gives n; oscillators of energy ¢ under the condition that

Y n =3N

We use, in this case, the Lagrange function:

(DzF—l[Zn,.—SN) (4.32)

D= ne, —kT{3N1n3N—Zn,.1nn,.J—;L[Zn; —3N}

‘-:E'=0=e,.+alc3t"(lm‘zg-+1)—/’L
on,

[

1 A

from which n, = el ¥ and 3N = Y= e[“" ) -Ze_ﬁt

Therefore :

mo_e” e (4.33)
Wy i L

5o

L= Ze_ﬁ is the partition function

Combining (4.32) and (4.33)

L

e, +kTY 3N

£

T E 4.34
(L= (4.34

ek
F=Z3N i

=-3NkT'InL
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Now: S:_B_F =3N klnL+Ea—L
T|, L 91|,
1
z _i z (I+E)h\’ hv i _ih_V
L=Ne T =N i —p21.¥Y p i =
i i i=0
_h v _2hv _3hv
=e T(l+e " +e  +e T +..
hv
-— 1
— o 2kT
= . _h_V
l—e T
hv . v hv
If T>>0, then — is small, and thene ¥ =1—-—
kT kT
hv
o kT
and L = —=*— = — from where
hv hv
kT S, = 3Nk(mi—r+l) (4.35)
v

i) Evaluation of the Griineisen constant
d(Inv)
d(InV)

We want to show that ¥ = is a constant.

Starting from the free energy of the crystal formed by N atoms:
kT
G=Ne- 3NkT(1nh—+l)+PV
v
hv
=N[£+3kT(lnE—1D+PV (4.36)

¢ is the energy of each atom.

At constant pressure and temperature values, thermodynamic equilibrium holds for dG = 0. However,
as dV is not necessarily zero:

G
b I
Vi,
oG oJe olnv
N s P=0
vl,, {av LTy T‘P]J’ (4.37)
oe

It is now necessary to calculate —

r.pr
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€A
Assuming small variations in V around
Vo:

d’e

- (4.38)

, 1
Vo % e=eo+5(V—Vo)2

] E=Ey

|

| 9 _,

| We note that 9V in €=

gy |— -

The total energy variation AE as a function of AV =V - Vo can be written as:

d’e
oV’
which corresponds to the work done by the external pressure P.

Thus, if we define: ﬁ:—%g_v —0 we have: P= -(V-V,)

Pl; VB

V=V 1 0%
IR

v
=—deV

£=£g Vo

1
AE=N(e—¢g,))= EN(V—VO)Z

vV
From this: —|PdV =
T

et _aze\ 1
Therefore: V> =

E=E;,

£=g,

1

NBV, de
and a_v

and e—g, = %(V—VO)2
V-V,
rp NﬁVO (439)

Combining (4.39) and (4.37)

- 4.40
V=Vy , 3ppg OV (4.40)

+P=0
NBV, ov

T.P

Differentiating (4.40) to T:

1 oV

1 v dlny
BV, oT

=0
» v

TP

3Nk = C, for high temperatures (Dulong-Petit law), so that:

dlnv 1 ov

1 _a
dv ~ V,dT|, BC, BC,
=

and dlnv _ aV (4.41)

v pc, !

where v is called the Griineisen parameter.
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In metals, this constant takes values between 2 and 3.
Some typical examples are: yAl = 2.06
yNi = 1.7
YAg = 2.6
vAu = 2.93
i)  Vacancy formation energy
We suppose that a vacancy is surrounded by x atoms, which changes their frequency from v to 'v

(when the vacancy is formed), whereas the other atoms are not perturbed. The variation in the
vibrational entropy of the lattice gives the formation entropy of the vacancy.

SF=8,3(N-x),v)+S,(3x,v)-S,(3N,v)=

=3(N- x)k(lnE + 1) + 3xk(lnE + 1) — 31“\Uc(lnE + 1] =
hv hv' hv

%
=3xk1ni,=—3xk1n1,=—3xkln(1+ﬂ)
1% 1% v
Since Av is small, then S = 3k
VvV
We show before (4.41) that:
dinv) _V dv__
d(nV) v dv
Av__ AV
v 'V
AV Vf o 744
—= from which S, = 3ky —
v v om which Sy k}'Vm
1 .
V, ~5Va, and y ~2 yield:
SE ~ 3k (4.43)
From this:
C,=e* ~20

Thus, the equilibrium concentration of vacancies can be estimated for ambient temperature at
C,=3-107"
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4.2.3 Creation of Vacancies
There are three possible ways to create vacancy defects:

a) Quenching
b) Strain hardening
C) Irradiation

a) Quenching

Quenching can produce an oversaturation of vacancies.
_AGy

Consider the formula (4.28); Cv(I)=e o

During rapid cooling, vacancies are "frozen" in the crystal. However, at temperature Ty | the

concentration remains Cv(I)>Cy(Ty) , corresponding to a metastable state.
6
The cooling speed needed to produce vacancies, dT/dtmax, is in the order of magnitude of 10°K /s
The quenching speeds are a function of the following:
1 - the thermal conductivity
2 - the heat capacity
3 - the shape of the sample
4 - the soaking fluid (water, nitrogen, liquid helium)
Measurement of the density of vacancy defects

We proceed with a series of isochronous annealings followed by quenching at the temperature of
liquid helium (figure 4-21).

T
annealing
T4
T3
T2
T1 N
quenching
/
4K ¢ -
v t
| | ' |
0 1 2 3
Po  Po Po Po

Figure 4-21: Diagram of the isochronous anneals with consecutive quenching
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Ey
kT,

We have: T=T,—C,=Cy—p=p,+p(T,) with Pr =C,e
T=T,->C,=Cy,—>p=py=p,+p(T) Apy = Py = Po
T=T,>C,=Cy—p=p;=p,+p;(T,) Ap; = pg = Po

5 5 £ _Ey

kT, . KT,
Then: Apé =CX(C¢—C3)=O¢CO e X _p ¥ =oC,e *h since € ° =(

; El 1
Plotting: InApg =In(xC,)——-— we get the formation energy of vacancies.

kT,
Aln(Ap,)
_ F
slope AG,
B
1
T
Example: El(AD)=0.76 eV El(Cu)=1.1eV
b) Strain hardening

The interactions between dislocations (see Chapter VI) lead to the formation of vacancies and
interstitials.

C) Irradiation

Irradiation of incident particles (electrons, neutrons, ions, photons) on matter produces the
displacement of atoms. This is possible when the energy transmitted during the collisions is much
larger than the energy of the bonds between atoms.

close exchange crowdions, propagating
Frenkel pair collisions dynamically
0 0O 0 0 0 0O O 0O
I X 2008200 48020
/ O
primary Q’ O O O O
knock-cn OOD OO O/ OO
lattice 808&[:1 O _O_g g
vacancy O 6 A o O
energy O O(SO qm O O
lransporj( O . & %
et 200002 o
0707070 000

{100%
diluted interstitial
zone atoms

Figure 4-2: Collision cascade producing lattice defects

page 66 chapter IV Physics of materials



&_6 Q‘M/ '
8

Figure 4-23: Collision particle-atom, before and after (from left to right)

v

In the case of a frontal elastic collision, we can calculate the maximum Kinetic 7, energy transmitted
to the atom of mass M:
4mM (4.46)

Tmax = 2 E
) (m+M)
(mc” =511 KeV for the electron).

_ 2148(E+1.02)

We can also write for electrons: 7, = >
mc
where Tnar i expressed in eV, E in MeV, and M is the atomic mass of the irradiated element.

Example
A=100,E=1MeV T, =43¢V

T,. >>E, (bond energy), e.g., 3-4 eV in copper.

We call threshold energy the limit beyond which there are irreversible atom displacements. If
T,.. <E, theenergy is transformed into heat. In many cases,E, ~4E, ~25 eV

The factor of 4 comes from the fact that the atom is not on the surface, and part of the bonds of the
closest neighbors need to be broken as well.

The cross-section for the atomic displacement is given by (in barns):

_ dc
%= 00 (4.47)

with ¢ = concentration of the vacancies created

¢ = irradiation flux

¢ = amount of irradiation

It is possible to have a cascade phenomenon: an atom ejected from its site collides with other atoms

and throws them out of their respective sites. The average number of atoms displaced (per unit
volume) is:

N, = n,iio 9t (4.48)

where ™M is the number of atoms per unit volume, and 7 is the average number of displacements per
primary atom.

_ T . = : . .
n=0.5 IR with T =average energy transmitted by the incident particle.
d

Physics of materials Chapter IV page 67



Example: irradiation with neutrons at 1 MeV

In iron
In copper

ST
no
L W
oo WO
= i=)

Other effects of irradiation
1) Low-temperature transformations

- formation of new phases (generally non-stable)
- accelerated diffusion

i) Mechanical properties alteration

- pinning of the dislocations by point defects
- weakening of materials

i) Production of He gas bubbles

Nuclear reactions give the products of fission, one part of which is gaseous. For example:

Ni*’ +n), — Fe™ + He"

These gases can form bubbles interacting with dislocations or other defects, causing swelling.
During irradiation, we observe an increase in the volume due to the displacement of atoms
and, consequently, to the production of vacancies and gas.

Self interstitial migration and
Frenkel defect annihilation

Self interstitial cluster migration

I I Vacancy migration

Induced resistivity

|V Vacancy-impurity cluster migration

V' Dissociation of sessile Vacancy
clusters

'
1 il

1 I
20 50 100 200
Temperature (K)

i
500

Figure 4-24: Electrical Resistivity measurements in Copper schematically showing the five stages of recovery (defect
annealing) from point defects produced irradiation 1
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